12th International Symposium on Biogeochemistry of Wetlands April 23-26, 2018

Coral Springs, Florida, USA

The Biogeochemistry of Card Sound, Florida circa 1972

By: Joseph L. Gilio, PWS Emeritus Presented by : Richard Baker

April 26, 2018

Biscayne Bay

Caesar Creek

N

Cutter Bank

Broad Creek

Angelfish Creek

FPL Turkey Point **Cooling Channels**

Card Sound

Little Card Sound

Card Bank

Card Sound Bridge

Barnes Sound

Straights of Florida

Active Sediment Depths and Sampling Stations within Card Sound and Little Card Sound

Sample Collection Methodology

- Sediment and organisms collected with polyethylene gloves, polyethylene tubes [sediment], trowels [biota] by snorkel divers, labeled in sealed whirl-pacs, iced, stored frozen in lab
- Water samples collected in pre-nitric acid washed polyethylene 1 L bottles. Phytoplankton samples collected in 8 L acid pre-washed polyethylene bottles. Direct pole collection for shallow water samples, deep samples, diver opened bottle at collection depth. Polyethylene gloves used at all times. All samples immediately iced, then frozen in lab

Chemical Preparation Methodology

- Ammonium pyrrolidine dithiocarbamate (APDC) synthesized from redistilled A.C.S. grade pyrrolidine and carbon disulfide
- Fuming nitric acid was redistilled in glassware
- All analysis and wash water was Millipore ^R filtered, followed by double distillation in pure silica ware and always below detection limits for all the trace elements analyzed
- All acid digestion occurred in silica flasks with silica ball tops
- All extraction occurred in pure polyethylene separatory funnels

Laboratory Analysis Methodology

- Dried NBS orchid leaves # 1517, frozen samples [sediment, biota, seawater] thawed, freeze dried, weighted sample digested with 1 M H₂NO₃
- Dried residue re-solubilized in 0.1 M H_2NO_3 and made up to 500 ml with double distilled pure water
- APDC chelation and methyl isobutyl ketone [A.C.S. grade] [MIBK] added to separatory funnels, shaken vigorously for 5 minutes, decanted and a second APDC extraction performed.
- APDC & MIBK decanted into silica flasks, dried to residue, solubilized and digested with 0.1 M H₂NO₃, made up to 5ml volume, transferred into polyethylene sealed containers.
- Eppendorf pipetted 10 to 20 ul samples of above into hollow graphite tube of apparatus. All samples analyzed in triplicate at < 5% SD.
- Flame atomic absorption spectrophotometry (dual beam) was used for most iron analysis.
- Other elements used the Atom Reservoir Atomic Absorption mode incorporating a Perkin Elmer (HGA-70) heated graphite atomizer with a deuterium arc background corrector and a variable ash temperature (ARAA/HGA-70/D₂/T_v).
- Matrix interferences from major ions Na⁺, Mg⁺², Ca⁺², Cl⁻¹ and SO₄⁻² and others was virtually eliminated through the APDC chelation and ketone extraction.
- Standard solutions from ultrapure nitrate salts of Fe, V, Cd, Co, Cu, Zn, Pb and Ag where made and run into the analyzer both prior to and at the end of sample runs. Graphite tubes were changed routinely.

	THIS PAPER'S METHOD Segar & Gilio (1973)	NBS SRM 1571	ACCURACY Segar & Gilio (1973)	ICP-MS (Note 2) Valentina et. al.(2003)
	Results ug/g	NBS Certified ug/g	Percent	% Recovery co-ppt
Fe	260 ± 20	270 (Note 1)	96	97.7
Cu	11 ±1	12 ± 2	92	84 -93.3
Zn	24 ±2	25 ± 3	96	
Cd	0.11 ±0.03	0.11 ± 0.02	100	86.4
Pb	44 ±5	45 ± 3	98	96.7

(Note 1) Nitric acid digestion resulted in a silica solid residue yielding 270 ug/g not 300. Error due to silica contaminant of 30 ug/g. Full solubilization with perchloric acid yield 300 ug/g (Cali, 1977). Hence, accurate SRM-1571 Orchard Leaves is 270 ug/g. based on the biological sample only.

(Note 2) Inductively Coupled Plasma Mass Spectroscopy ICP-MS (4500 HP), from Valentina, et. al., (2003)

Accuracy of Orchard Leaf Testing Methods

Standard run curves for calibration and during sample analysis

Halicona molitba

Ircinia fasiculata

Thalassia testudinum

Halimeda incrassata

Penicillus capitatus

Laurencia poitei

Biota species Included in this study

Trace element inventory for Card Sound, Florida

- **NOTES:** (1) Calculated from concentration data elements in Card Sound, from Pellenbarg (1973). Includes total sediment depth and total element concentrations.
 - (2) Josselyn (1975).
 - (3) Calculated from Bach (1975). Includes <u>Halimeda incrassate</u> (5.5), <u>H. monile</u> (1.5), and <u>H. opunta</u> (1.4).
 - (4) Calculated from Bach (1975). Includes <u>Penicillus capitatus</u> (1.7), <u>Rhipocephalus phoenix</u> (0.51), and <u>Udotea flabellum</u> (0.48).

Compartment	<u>Biomass</u>	<u>v</u>	Fe	<u>Cu</u>	Zn	<u>Cd</u>	<u>Pb</u>
	g dry wt./m ²	<u>mg/m²</u>	<u>mg/m²</u>	<u>mg/m²</u>	<u>mg/m²</u>	<u>mg/m²</u>	<u>mg/m²</u>
Sediments (1)	3.4 x 10⁵	8.0x10 ³	6.3 x 10⁵	670	1400	23	340
Water	3.0 x 10 ⁶	2.6	52	12	26	.21	1.5
BIOTA							
Macrophyta							
Thalassia	1.67 x 10 ²	1.4	53	0.27	3.0	0.033	0.12
testudium							
Laurencia poitei	6.1 (2)	0.23	2.6	0.073	0.21	0.0012	0.0036
Halimeda group	8.7 (3)	0.023	2.2	0.0068	0.036	0.0016	0.012
Penicillus group	3.1 (4)	0.015	1.7	0.0037	0.037	0.00034	0.0034
Microphyta							
Epiphytes	10	.96	4.2	0.21	1.5	0.002	0.0059
Phytoplankton	0.28	0.0092 x 10 ⁻²	0.064	0.0034	0.050	0.0076 x 10 ⁻³	0.0092 x 10 ⁻²
Macrofauna							
Sponges	1.1 x 10 ²	0.032	89	0.19	2.1	0.030	0.014
Detritivores +							
Carnivores	0.18 x 10 ²	0.021 x 10 ⁻²	0.011	0.002	0.075	0.055 x 10 ⁻³	0.011 x 10 ⁻²
BIOTA TOTAL	310	2.7	150	0.76	7.0	0.068	0.16

CARD SOUND COMPARTMENTS for Trace Metals During 1972

Compartment	Annual Net Production g/m²/yr	V mg/m²/yr	^{Fe} mg/m²/yr	Cu mg/m²/yr	Zn mg/m²/yr	Cd mg/m²/yr	Pb mg/m²/yr
Macrophyta							
<u>Thalassia</u> blades	609.	5.2	200.	0.97	11.	0.12	0.44
Laurencia poetei	11.	1.1	4.6	0.13	0.37	0.0022	0.0065
<u>Penicillus</u> group	4.2 (1)	0.021	2.4	0.0052	0.052	0.00047	0.0047
<u>Halimed</u> a group	8.6 (2)	0.021	2.0	0.0060	0.032	0.00014	0.010
Σ Sub-comp	<mark>630</mark>	<mark>6.3</mark>	<mark>210</mark>	<mark>1.1</mark>	13.	<mark>0.12</mark>	<mark>0.46</mark>
Microphyta							
Epiphytes	180.	17.	76.	3.8	27.	0.036	0.11
phytoplankton	120.	0.040	28.	1.4	22.	0.024	0.040
Σ Sub-comp	<mark>300</mark>	<mark>17.</mark>	100	<mark>5.2</mark>	<mark>49.</mark>	<mark>0.060</mark>	<mark>0.15</mark>
Macrofauna							
Sponges	21.	0.059	11.	0.078	0.50	0.0092	0.0076
Detritivores + Carnivores	6.6 (3)	0.0051	0.27	0.049	0.18	0.0043	0.0026
Σ Sub-comp	<mark>28.</mark>	<mark>0.12</mark>	<mark>11.</mark>	<mark>0.13</mark>	<mark>0.68</mark>	<mark>0.14</mark>	<mark>0.010</mark>
Total for Biota	960.	24.	320.	6.4	61.	0.19	0.62

Trace Element Net Biological Incorporation in Card Sound - 1972

Trace Element Potential Biogeochemical Fluxes Within Card Sound During 1972

Trace Metal Fluxes to Biota within Card Sound Water Column During 1972

Element	Water Column (Kg)	Turnover (days)	Bio flux (days)
Fe	3,000	50	49
Zn	1,500	25	9.5
Cu	670	13	1.0
Pb	88	44	0.096
Cd	12	60	0.027

Trace Metal Mass, Turnover and Bio Flux Times Within Card Sound Water 1972

EFDC Modeling of Card Sound Circulation

- Mine data from WWW
- Stabenau (2015, GitHub), NOAA, NCDC, USGS, Bader & Roessler (1972)
- Develop Grid and Inputs (Met, Tidal BCs, Depths)
- Run model for October 1972 and save results (water levels and flows) at 15minute intervals for key locations (boundaries and Within Card Sound)
- Inject Conservative Tracer at Card Sound Ocean Boundaries and estimate time to steady-state at Card Sound Bridge
- Runs Base Case (tidal forcing and basic met only), add Winds, add FPL intake from Biscayne Bay and discharges to Biscayne Bay and Card Sound, add Canal discharges to Biscayne Bay and Card Sound
- Use Spreadsheet to calculate boundary fluxes, based on EFDC predicted flows and ebb and flood tide water quality monitoring by Author at boundaries (October 17-19, 1972)

National Park Service

South Florida Natural Resources Center

Biscayne Bay Simulation Model (BBSM)

ø Boundary Codes Description Internal node Ocean boundary node Mixed node Land boundary node BISC Stations

Predicting salinity regime under alternate discharge scenarios

BBSM 2D model with:

- Advection and diffusion
- Rain and evaporation
- Wind stress
- Bottom friction
- Tidal mixing
- Surface water inflows*
- Model or observation based boundary conditions

EXPERIENCE YOUR AMERICA

Card Sound and Biscayne Bay EFDC Grid - CAFE Node and NOAA Chart Depth Data Coverage

----EFDC Cartesian Grid CAFE Nodal Depth Data Locations ----NOAA Chart Depth Data Locations

NOAA Predicted Tides, Miami Beach, October 1972

Rainfall at Miami Airport 1972

Meteorological Data at Miami Airport During October 1972

Dye Concentration at Card Sound Bridge - October 1972 - No Win, No FPL, No Canals

Tide Stage Predictions in Center of Card Sound and at Ocean Boundaries - October 1972 - Winds, FPL, Canals

Flows passing through Broad Creek to/from Ocean- October 1972 Wind, FPL, Canals

m3/sec	3-day average	October average
Base	-376	-341
Base+Wind	-363	-242
Base+Wind	+Qs -388	-261
Predicted Wa	ter Mass Fluxes	Across Cutter Bank

Biscayne Bay

Cutter Bank

FPL Discharge Canal

	kg/d (3-day survey)				
	Fe	Cu	Zn	Cd	Pb
Base	-334	-8.8	-61	-1.4	-1.0
Base+Wind	-354	-12.6	-65	-1.5	-1.2
Base+Wind+Qs	-372	-14.0	-68	-1.6	-1.3

Predicted Trace Metal Fluxes Through Card Sound Bridge

Card Bank

Card Sound Bridge

Card Sound

Broad Creek

Angelfish Creek

Broad Creek	Fe	Cu	Zn	Cd	Pb
Base	779	197	112	9.1	24.7
Base+Wind	699	187	106	8.7	23.5
Base+Wind+Qs	670	187	102	8.7	23.3
Angelfish Creek					
Base	425	108	61	5.0	13.6
Base+Wind	398	106	60	4.9	13.2
Base+Wind+Qs	392	106	58	4.9	13.2

Predicted Trace Metal Fluxes at Ocean Boundaries

Barnes Sound

Straigts of Florida

Summary of Author's Research and Future Goals

- Established High Quality database of Card Sound Water, Biota and Sediments, prior to significant Anthropogenic Impacts (Over 45 years ago)
- Increased Knowledge of Trace Metal Cycling Within an Important Florida Estuary
- Suggests lines of Future Research

> Use Author's database and knowledge to Develop Comprehensive 3-d Model of Circulation and trace element cycling within Card Sound and adjacent waters

- > Extend Model Boundaries to Include Coastal and Offshore Waters (Florida Current)
- > Develop high quality database of Current Conditions within Card Sound
- > Use Enhanced Modeling Framework to Study Anthropogenic Impacts, such as Impacts of Current FPL Turkey Point Nuclear Plant Discharges and its Cooling Canals Impacts of Coastal Development on Fish and Shellfish Nurseries Impacts of Climate Change and SLR